US009117023B2

a2 United States Patent

Hershkovitz et al.

US 9,117,023 B2
*Aug. 25, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

DYNAMIC GENERATION OF TEST
SEGMENTS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Oz Dov Hershkovitz, Haifa, IL. (US);
Yoav Avraham Katz, Haifa, IL. (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 156 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/887,376

Filed: May 6, 2013

Prior Publication Data
US 2013/0311164 Al Nov. 21, 2013

Related U.S. Application Data

Continuation-in-part of application No. 12/626,901,
filed on Nov. 29, 2009, now Pat. No. 8,438,000.

Int. Cl1.

GO6F 17/50 (2006.01)

GO6F 9/45 (2006.01)

GO6F 9/455 (2006.01)

GO6F 11736 (2006.01)

U.S. CL

CPC ... GO6F 11/3652 (2013.01); GO6F 113684

(2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,539,652 A * 7/1996 Tegethoffc..c.oeeee. 703/14
5,729,554 A 3/1998 Weir et al.
6,112,312 A * 82000 Parkeretal.ccoce. 714/32
6,226,716 B1* 5/2001 Baumanetal. 711/145
7,085,964 B2 8/2006 Fournier et al.
7,290,174 B1 10/2007 Gray et al.
7,299,382 B2* 11/2007 Jorapur 714/38.14
7,627,843 B2* 12/2009 Dozorets et al. .. 716/106
2003/0188224 Al* 10/2003 Deckerccccevvenene. 714/25
2005/0223346 Al 10/2005 Smith et al.
OTHER PUBLICATIONS

Hennenhoefer et al., “The evolution of Processor Test Generation
Technology”, Obsidian Software Inc., Published Aug. 2008, 8 pp.

(Continued)

Primary Examiner — Omar Fernandez Rivas
Assistant Examiner — Nithya J Moll

(57) ABSTRACT

A computerized apparatus, method and computer product for
generating tests. The apparatus comprises: a processor; an
interface for obtaining a test template associated with a com-
puterized system that comprises a template segment compris-
ing instructions and directives or related control constructs; a
test generator for generating a test associated with the tem-
plate segment, comprising: a simulator for determining a state
of the system associated with an execution of the test; a
selector for selecting a template instruction or segment from
the test template based on the state of the system; and a
generator configured to generate a multiplicity of instructions
based on system’s state and on the selected template segment,
wherein the test generator further comprises a verifier con-
figured to verify that a previously generated instruction is in
line with the current state of the system and with the selected
template instruction or segment.

15 Claims, 3 Drawing Sheets

| OBTAIN A TEST TEMPLATE

PPD

310

SELECT A TEMPLATE INSTRUCTION OR

| SEGMENT

2

ROCESSED’

WAS THE TEMPLATE
INSTRUCTION OR
SEGMENT PREVIOUSLY,

320
~

NO

330

340
‘GENERATE AN
INSTRUCTION

| GENERATE INSTRUCTION FOR LEFTOVER

TEMPLATE INSTRUCTIONS

rSBO

385
EXECUTE THE TEST

US 9,117,023 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Behm et al., “Industrial experience with test generation languages for
processor verification”, DAC ’04, Proceedings of the 41st annual
Design Automation Conference, pp. 36-40, 2004/.

Chandra et al., “AVPGEN—A Test Generator for Architecture Veri-
fication”, IEEE Transactions on VLSI Systems, vol. 3, Issue 2, pp.
188-200, Jun. 1995.

Zhang et al., “Using Model-Based Test Program Generator for Simu-
lation Validation”, ICESS’04: Proceedings of the First international
conference on Embedded Software and Systems, pp. 549-556, Dec.
2004.

Bell et al., “Automatic Testcase Synthesis and Performance Model
Validation for High-Performance PowerPC Processors”, IEEE Inter-

national Symposium on Performance Analysis of Systems and Soft-
ware, pp. 154-165, 2006.

Lietal., “MA2TG: A Functional Test Program Generator for Micro-
processor Verification”, Proceedings of the 2005 8th Euromicro con-
ference on Digital System Design (DSD’05), pp. 176-183, 2005.
Mishra et al., “Towards Automatic Validation of Dynamic Behavior
in Pipelined Processor Specifications”, Design Automation for
Embedded Systems, vol. 8, Issue 2-3, pp. 249-265, 2003.

Artho et al., “Combining Test Case Generation and Runtime Verifi-
cation”, Theoretical Computer Science—Abstract state machines
and high-level system design and analysis archive,vol. 336 Issue 2-3,
pp. 209-234, May 2005.

Sacha Krzysztof, “Verification and Implementation of Dependable
Controllers”, International Journal of Critical Computer-Based Sys-
tems archive, vol. 1, Issue 1/2/3, pp. 238-254 , Feb. 2010.

* cited by examiner

U.S. Patent Aug. 25, 2015 Sheet 1 of 3 US 9,117,023 B2

100

110
L
TEST TEMPLATE
120
= 125
—
TEST GENERATOR SIMULATOR
105
130 <=
TARGET COMPUTERIZED
TEST SYSTEM

FIG. 1

U.S. Patent Aug. 25, 2015 Sheet 2 of 3 US 9,117,023 B2

200

VERIFICATION DEVICE 220
=
TEST GENERATOR
230 260
STATE SIMULATOR |~ GAP SIZE DETERINATOR |~
265
TEMPLATE 230 GAP MODIFIER -~
|~
INSTRUCTION OR 270
SEGMENT INSTRUCTION VERIFIER |~
SELECTOR 075
BACKTRACKING |~
INSTRUCTION | 2% MODULE
GENERATOR ,
LEFTOVER TEMPLATE | %°
INSTRUCTION GENERATOR

202 280
= EXE(;JTION /205
PROCESSOR
MODULE INTERFACE
210
=
TEST TEMPLATE

FIG. 2

U.S. Patent

Aug. 25, 2015 Sheet 3 of 3 US 9,117,023 B2
300
OBTAIN A TEST TEMPLATE
+ /310
SELECT A TEMPLATE INSTRUCTION OR
SEGMENT

320
S~

WAS THE TEMPLATE
INSTRUCTION OR
SEGMENT PREVIOUSLY
PROCESSED?

YES NO
v 350 v
VERIFY GENERATED .5 ADJUST GAP | 3%
INSTRUCTION IF NEEDED
+ 360 Y 340
PERFORM BACKTRACKING |5 GENERATEAN |
IF NEEDED INSTRUCTION

!

SIMULATE A STATE OF AN EXECUTION

END OF EXECUTION?

NO

390

GENERATE INSTRUCTION FOR LEFTOVER |}~

TEMPLATE INSTRUCTIONS

+ 395
EXECUTE THE TEST |~

FIG. 3

US 9,117,023 B2

1
DYNAMIC GENERATION OF TEST
SEGMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of and claims the benefit
of' U.S. non-provisional application Ser. No. 12/626,901 filed
Now. 29,2009, now U.S. Pat. No. 8,438,000, which is hereby
incorporated by reference in its entirety.

BACKGROUND

The present disclosure relates to verification of computer-
ized systems, in general, and to generating tests based on test
templates in particular.

Computerized devices control almost every aspect of our
life—from writing documents to controlling traffic lights.
However, computerized devices are bug-prone, and thus
require a testing phase in which the bugs should be discov-
ered. The testing phase, also referred to as verification phase,
is considered one of the most difficult tasks in designing a
computerized device. The cost of a bug may be enormous, as
its consequences may be disastrous. For example, a bug may
cause the injury of a person relying on the designated behav-
ior of the computerized device. Additionally, a bug in hard-
ware or firmware may be expensive to fix, as patching it
requires call-back of the computerized device. Hence, many
developers of computerized devices invest a significant por-
tion, such as 70%, of the development cycle to discover
erroneous behaviors of the computerized device.

A test template, comprising several template instructions,
may be designed in order to test an aspect of a target comput-
erized system. The test template may be utilized by a genera-
tor that generates several tests that are in line with the test
template. The test may be implemented, for example, as a
binary file or as an assembly program that is configured to
perform actions defined in the test template.

A generator may iterate over template instructions in the
test template, in a predetermined order. For each template
instruction, the generator may generate a corresponding one
or more test instructions.

BRIEF SUMMARY OF THE INVENTION

One exemplary embodiment of the disclosed subject mat-
ter is a computerized apparatus comprising: a processor; an
interface for obtaining a test template associated with a target
computerized system, the test template comprises a template
segment, the template segment comprising one or more
instructions and one or more directives or control constructs
related to the instructions; a test generator configured to gen-
erate a test associated with the template segment obtained by
said interface, said test generator comprises: a state simulator
configured to determine a state of the target computerized
system associated with an execution of the test; a template
instruction or segment selector configured to select a template
instruction or segment from the test template based on the
state of the target computerized system determined by said
state simulator; and an instruction template segment genera-
tor configured to generate a multiplicity of instructions based
on the state of the target computerized system and the tem-
plate segment selected by said template instruction selector,
wherein the test generator further comprises an instruction
verifier configured to verify that a previously generated
instruction is in line with the current state of the target com-

10

15

20

25

30

35

40

45

50

55

60

65

2

puterized system and with the template instruction or seg-
ment selected by said template instruction or segment selec-
tor.

Another exemplary embodiment of the disclosed subject
matter is a method comprising: obtaining, by an interface, a
test template associated with a target computerized system,
the test template comprises a template segment, the template
segment comprising one or more instructions and one or more
directives or control constructs related to the instructions;
generating a test associated with the template segment
obtained by said interface, said test generator comprises:
simulating a state of the target computerized system associ-
ated with an execution of the test; selecting a template instruc-
tion or segment from the test template based on the state of the
target computerized system determined by said simulating;
generating a multiplicity of instructions based on the state of
the target computerized system and the template segment
selected by said selecting; and verifying that a previously
generated instruction is in line with the current state of the
target computerized system and with the template instruction
or segment selected by said selecting, whereby the test tem-
plate is transformed to the test configured to be executed by
the target computerized system.

Yet another exemplary embodiment of the disclosed sub-
ject matter is a computer program product comprising: a
computer readable medium; a first program instruction for
obtaining a test template associated with a target computer-
ized system, the test template comprises a template segment,
the template segment comprising one or more instructions
and one or more directives or control constructs related to the
instructions; and a second program instruction for generating
a test associated with the template segment obtained by said
interface, said second program instruction comprising: a third
program instruction for simulating a state of the target com-
puterized system associated with an execution of the test; a
fourth fifth program instruction for selecting a template
instruction or segment from the test template based on the
state of the target computerized system determined by said
simulating; a fifth program instruction for generating a mul-
tiplicity of instructions based on the state of the target com-
puterized system and the template segment selected by said
selecting; and a sixth program instruction for verifying that a
previously generated instruction is in line with the current
state of the target computerized system and with the template
instruction or segment selected by said selecting, whereby the
test template is transformed to the test configured to be
executed by the target computerized system, and wherein said
first, second, third, fourth, fifth and sixth program instructions
are stored on said computer readable medium.

THE BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The present disclosed subject matter will be understood
and appreciated more fully from the following detailed
description taken in conjunction with the drawings in which
corresponding or like numerals or characters indicate corre-
sponding or like components. Unless indicated otherwise, the
drawings provide exemplary embodiments or aspects of the
disclosure and do not limit the scope of the disclosure. In the
drawings:

FIG. 1 shows a computerized verification environment in
which the disclosed subject matter is used, in accordance with
some exemplary embodiments of the subject matter;

FIG. 2 shows a block diagram of a verification device in
accordance with some exemplary embodiments of the dis-
closed subject matter; and

US 9,117,023 B2

3

FIG. 3 shows a flowchart diagram of a method in accor-
dance with some exemplary embodiments of the disclosed
subject matter.

DETAILED DESCRIPTION

The disclosed subject matter is described below with ref-
erence to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the subject matter. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks. These computer program instructions may
also be stored in a computer-readable medium that can direct
a computer or other programmable data processing apparatus
to function in a particular manner, such that the instructions
stored in the computer-readable medium produce an article of
manufacture including instruction means which implement
the function/act specified in the flowchart and/or block dia-
gram block or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

One technical problem dealt with by the disclosed subject
matter is to generate a test based on a test template. Another
technical problem dealt with by the disclosed subject matter
is to utilize a simulated state of a target computerized system
during generation, such that the test is directed to inspect
some behaviors of the target computerized system, for
example behaviors that may cause a bug, behaviors that
include a predetermined scenario, such as involving excep-
tional parameters, behaviors that test various memory
manipulations, or the like.

Yet another technical problem dealt with by the disclosed
subject matter is to allow for a layout generation of a test
template. A layout generation may enable the designer of the
test template to rely on a layout of the test template as a layout
of the test. Layout generation may be useful for tests that
comprise repetitive behaviors, such as a loop. Yet another
technical problem dealt with by the disclosed subject matter
is to generate an instruction that is valid in respect to two or
more different states of the target computerized system.

Yet another technical problem dealt with by the disclosed
subject matter is the need to test more complex scenarios,
such as a multiplicity of instructions that may be repeated,
scenarios that comprise more complex programmatic con-
structs, whether known constructs for example if-then-else,
while loops, or other user-defined constructs as required.

One technical solution is a test generator comprising a state
simulator utilized for simulating a state of a target computer-
ized system executing a generated test, and a template

30

40

45

50

4

instruction selector for selecting a template instruction upon
which an instruction is generated.

Another technical solution is to iterate over the template
instruction in respect to the simulated state and to generate
instructions in that order. Yet another technical solution is to
determine whether an already generated template instruction
is encountered and to verify that the corresponding generated
instruction is an instruction that may have been generated by
the test generator in respect to a current simulated state.

Another technical solution is to associate a location in
memory with a template segment that may comprise of plu-
rality of instructions, control constructs, and directives. The
template segment may thus behave similarly to a macro, and
the instructions will be generated every time the program gets
to the location.

One technical effect of utilizing the disclosed subject mat-
ter is automatically generating a test based on a test template.
Another technical effect is automatically generating a test that
utilized an expected state of a target computerized system
such that the generated instructions are configured to be asso-
ciated with some aspects of the target computerized system.
Yet another technical effect is modifying a gap of instructions
in a test.

Another technical effect of utilizing the disclosed subject
matter is relates to enhanced testing capabilities when testing
complex programmatic constructs. Associating a location in
memory with a template segment may provide a user design-
ing the tests with control over the programmatic construct in
every pass, which enables the testing of different behaviors on
different passes.

Referring now to FIG. 1, showing a computerized verifi-
cation environment in which the disclosed subject matter is
used, in accordance with some exemplary embodiments of
the subject matter. A computerized verification environment
100 may comprise a test template 110, a test generator 120
and a simulator 125.

Test template 110 may be a set of definitions that are
configured to determine a test associated with a target com-
puterized system 105. Test template 110 may be a layout test
template. Test template 110 may comprise a set of template
instructions. A template instruction (not shown) may define a
set of one or more possible instructions, such as different
types of instructions, accessing different resources (such as
different memory addresses), having different parameters
and the like. A template instruction may be for example
“random instruction”, which may define any valid instruc-
tion. A template instruction may be “ADD R3 R1+R2” which
may define an addition instruction that adds values of regis-
ters. A template instruction may be “LOAD R4 MEM|R3+
displacement|” which may define a loading of memory to R4
register from a memory location defined by some random
displacement from the value of register R3. It will be noted
that some of the instructions defined by a template instruction
may differ in number of bits, for example a LOAD operation
may be defined to load 8 bits or alternatively 16 bits. A
template instruction may be “conditional branch” which may
define any conditional branching instruction. The template
instruction may or may not be provided with a target address
or label.

In some exemplary embodiments, test template 110 may
comprise one or more segments which may be labeled, for
example “if-then-else”, “sorting macro”, “John’s segment”
or the like, and which may comprise one or more instructions
or one or more complex control constructs. When the test
segment is first generated, the relevant instructions are gen-
erated in accordance with the template segment and a map-
ping is made between the memory location of the first instruc-

US 9,117,023 B2

5

tion in the segment and the segment label. When execution
arrives to the same memory location, the relevant instructions
are generated again in accordance with the template segment
and the current machine state, thus providing for testing more
complex scenarios.

In some exemplary embodiments, the target computerized
system may be a Processor, a Central Processing Unit (CPU),
a microprocessor, an electronic circuit, an Integrated Circuit
(IC), a mobile phone, a cellular device, a Personal Digital
Assistant (PDA), hardware, software, firmware or the like.

In some exemplary embodiments, test generator 120 may
generate a test 130 based on test template 110. Test generator
120 may generate a test 130 that is configured to inspect some
aspects of target computerized system 105, for example
invoking page fault behavior, initiating specialized behaviors
in a cache, triggering optimization logic in an instruction
scheduling or the like. It will be noted that the some aspects of
target computerized system 105 may be exceptional or
deemed interesting by a developer, verification engineer or
the like. The some aspects of target computerized system 105
may be behaviors that are likely to involve an error.

In some exemplary embodiments, test generator 120 may
comprise a simulator 125. Simulator 125 may simulate a state
oftarget computerized system 105. Simulator 125 may simu-
late an execution of test 130, or a portion of test 130, by target
computerized system 105. Test generator 120 may utilize
simulator 125 to determine a state of target computerized
system 105 after executing a generated portion of test 130.
The state of target computerized system 105 may be utilized
in generating additional portion of test 130, such as a “next”
instruction about to be executed by target computerized sys-
tem 105 according to the state determined by simulator 125.

In some exemplary embodiments, test generator 120 may
iteratively generate an instruction in respect to a single tem-
plate instruction, determines a state of target computerized
system 105 executing the generated instruction, an continues
generation of a next template instruction, according to the
state of target computerized system 105.

In some exemplary embodiments, test generator 120 may
further execute test 130 on target computerized system 105.
Test generator 120 may execute test 130 after completing
generation of test 130. In some exemplary embodiments,
several tests are generated and may be executed on target
computerized system 105.

Referring now to FIG. 2 showing a block diagram of a
verification device in accordance with some exemplary
embodiments of the disclosed subject matter. A verification
device 200 may comprise a test generator 220, such as 120 of
FIG. 1, which may comprise a state simulator 230, such as
simulator 125 of FIG. 1.

Verification device 200 may further comprise an interface
205. Interface 205 may be configured to receive, retrieve or
otherwise obtain a test template 210, such as test template 110
of FIG. 1. Interface 205 may be an Application Programming
Interface (API), a socket or other 1/O capable module.

In some exemplary embodiments, verification device 200
comprises a processor 202. Processor 202 may be a Central
Processing Unit (CPU), a microprocessor, an electronic cir-
cuit, an Integrated Circuit (IC) or the like. Processor 202 may
be utilized to perform computations required by verification
device 200 or any of it subcomponents.

For example, test template 210 may comprised the follow-
ing template instructions:

10

15

25

30

35

40

45

50

55

60

65

1: Generate { COMPARE}
2: Generate { CONDITIONAL BRANCH} with {target = ELSE}
3: Repeat {times in [1, 10]}

Generate {random instruction}
4: Generate {BRANCH} with {target = END}
5:ELSE:

Repeat {times=5}

Generate {random instruction} with {exception}

A first template instruction may indicate generating of a
compare instruction. A second template instruction may indi-
cate generating a conditional branch instruction, which is
targeted to an ELSE label. In some exemplary embodiments,
the target may be an explicit address, an implicit address, a
label or the like. A third template instruction may indicate
generation of any number of instructions between one and
ten, each instruction may be any possible instruction. A fourth
template instruction may indicate generation of a branching
instruction which is targeted to an END label. A fifth template
instruction may indicate generation of five instructions, each
of'which may be any instruction that causes an exception. The
fifth template instruction may further indicate that the ELSE
label is associated with a first instruction generated based on
the fifth template instruction. It may be noted that the END
label may be similarly defined in an additional template
instruction, such as a sixth template instruction.

In some embodiments, test template 210 may comprise one
or more instruction segments, which may be treated similarly
to a macro, e.g., a sequence of corresponding computer
instructions may be generated every time the macro location
is reached. The test template may comprise one or more
instructions and one or more directives related to the instruc-
tions. The directives may influence the behavior of the gen-
erated code, such that the instructions generated upon the
template segment may behave differently in different activa-
tions of the generator, due to the directives.

For example, test template 210 may comprise the following
template segment:

Macro If-Then-else-Loop:
START:
Generate {COMPARE}
Generate {CONDITIONAL_BRANCH} with {target=ELSE}
If (the conditional branch was not taken) {
Repeat {times=2}
Generate {random instruction}
Generate {BRANCH} with {target=END}

j
Else { //the branch was taken
ELSE:
Repeat {times=3}
Generate {random instruction} with {exception}
)

END:
Generate { COMPARE }
Generate { CONDITIONAL_BRANCH } with { target=START }

Since the usage of variables may be allowed to adjust the
variables according to the generated instructions, all labels
are assumed to be known when encountered. For simplicity, it
may be assumed that the If-Then-FElse macro is generated at
address 0x1000 and instructions are 4 bytes length. In such
case the ELSE will reside at 0x1014 (or at CONDITIONAL,_
BRANCH address+0x14), and the END will reside at 0x1024
and a possible memory image after the first pass may be:

0x1000 cmp

0x1004 cond_branch

0x1008 XXXXXXXX

0x100c XXXXXXXX

US 9,117,023 B2

0x1010 XXXXXXXX

0x1014 add

0x1018 sub

0x101c xor

0x1020 cmp

0x1024 cond_branch
Wherein the XXXXXXXX represents that no instructions
were generated in these addresses.

If the last conditional branch is taken and execution goes
back to the START label, then the generator arrive again to
address 0x1000. Since the tool binds this address to the If-
Then-else-Loop macro, this macro is now generated again in
the current state of the machine, wherein the full expressive
power of the description language of the generator may be
used. If on the second pass the first conditional branch is not
taken, then a possible image of the memory after the second
pass may be as follows:

0x1000 cmp

0x1004 cond_branch

0x1008 mult

0x100c div

0x1010 branch

0x1014 add

0x1018 sub

0x101c xor

0x1020 cmp

0x1024 cond_branch

Every time generation reaches address 0x1000 the macro
may be called and the generator will generate corresponding
commands. Although the memory may already be occupied
when execution reaches that point, some changes may still
occur during later passes of the generation, for example by
specifying directives in the template segment which may be
indicated, for example, as parameters related to an instruction
or a segment, or in any other manner. For example, a verifi-
cation engineer may specify that no exceptions are allowed up
to the 10” pass, but are allowed in later passes. In other
examples, the directives may relate to what data is stored/
loaded, whether to choose a result that will raise a flag or not,
or the like. Thus, in different generations different directives
may be used which test different aspects of the scenarios and
the rules specified in the macro may be enforced.

In another example, the macro may be used for testing
self-modifying code as follows:

LOOP:

Generate First Time sub, Second time add, Third time xor

// in the first pass generate a subtract command, in the
second time an add command and in the third time a xor
command

Repeat {times=between [1,5]}

Generate {random instruction}

Generate move (memory to memory instruction that will
move 4 bytes to LOOP from a new memory, assuming
add, sub and xor are all 4 bytes long)

Cond_branch (3 times to Loop)

In the first time the sequence is generated, a SUB instruc-
tion may be generated. Then some instructions may be gen-
erated, and then a Move instruction may be generated which
moves from a new location in memory back to the Loop label,
after which the branch back to LOOP may be taken. Using
late initialization, any required instruction may be generated,
for example an add instruction may be generated in the right
time and context, and similarly for the third pass of the loop.

In some embodiments, random decisions may be taken
during the generation of the template section since a language
may support random decisions in the control constructs, for
example how many times a Repeat statement will occur. The

10

15

20

25

30

35

40

45

50

55

60

65

8

decision is recorded, and in the next time the location is
reached, the decision which originally was random is now
enforced to the previous value. This may provide a user with
flexibility to have the first pass very random since later passes
may take random decisions into account.

Test generator 220 may be configured to generate a test
based on test template 210. Test generator 220 may be con-
figured to generate a test based on a layout test template. Test
generator 220 may be configured to provide for a dynamic test
generation, taking into account an expected state of the target
computerized system executing the test, in order to generate
the test such that some aspects of the target computerized
system may be inspected.

In some exemplary embodiments, state simulator 230 may
be configured to simulate an execution of a test. State simu-
lator 230 may be implemented in hardware, software, firm-
ware, combination thereof or the like. State simulator 230
may determine a state of the target computerized system
executing one or more instructions. For example, the state
may include values to various variables, such as for example
registers, program counter and the like, content of memory
space, memory addresses, content of caching system and the
like. A value of a program counter, instruction pointer or a
similar next instruction indicator variable may indicate a next
instruction to be performed by the target computerized sys-
tem in a next cycle. State simulator 230 may be configured to
be suspended after execution of one or more instructions.
State simulator 230 may further execute one or more addi-
tional instructions after being deemed as no longer sus-
pended. State simulator 230 may be configured to initially
simulate an initial state of the target computerized system
upon booting, loading a test or the like.

In some exemplary embodiments, test generator 220 may
comprise a template instruction or segment selector 240.
Template instruction or segment selector 240 may be config-
ured to select a template instruction or a template segment
from test template 210 in accordance with the state of the
target computerized system. The state of the target comput-
erized system may be determined by simulator 230. The
template instruction may be selected based on a value of a
next instruction indicator such as for example a program
counter, an instruction pointer or the like. The next instruction
indicator may indicate which instruction is deemed to be
executed next by the target computerized system. Referring to
the aforementioned exemplary test template, after executing
an instruction associated with the second template instruc-
tion, the next instruction indicator may point to a successive
instruction associated with the third template instruction, or
to a different instruction associated with the fifth template
instruction (i.e., associated with the EL.SE label). The value of
the next instruction indicator may depend on a value evalu-
ated after executing an instruction associated with the first
template instruction. The value of the next instruction indi-
cator may depend on determination whether or not the con-
ditional branch is taken, which may be based on an output of
a comparison instruction, generated based on the first tem-
plate instruction. Template instruction or segment selector
240 may determine a template instruction or template seg-
ment that is associated with an instruction that is deemed to be
executed next by the next instruction indicator. Template
instruction or segment selector 240 may select, for example,
the third template instruction the fifth template instruction, or
a template segment.

In some exemplary embodiments, template instruction or
segment selector 240 may select to execute a template seg-
ment rather than a template instruction, such as a segment
identified by a label, such as the macros provided above.

US 9,117,023 B2

9

Template instruction or segment selector 240 may thus be
configured to select a template instruction or a template seg-
ment from test template 210 in accordance with the state of
the target computerized system. The state of the target com-
puterized system may be determined by simulator 230. The
template instruction or segment may be selected based on a
value of a next instruction indicator such as for example a
program counter, an instruction pointer or the like. The next
instruction indicator may indicate which instruction or seg-
ment is deemed to be executed next by the target computer-
ized system.

In some exemplary embodiments, test generator 220 may
comprise an instruction generator 250. Instruction generator
250 may generate one or more instructions based on a tem-
plate instruction. Instruction generator 250 may utilize a state
of'the target computerized system to generate the one or more
instructions. The state may be determined by state simulator
230. Instruction generator 250 may generate an instruction
that is configured to test some aspects of the target comput-
erized system, such as causing page faults, division by zero,
raising exceptions and the like. Instruction generator 250 may
utilize the state of the target computerized system to deter-
mine which instruction to generate, which parameters to pro-
vide the instruction or the like. In some exemplary embodi-
ments, the state of the target computerized system prohibits a
generation of an invalid instruction, such as accessing an
invalid section of the memory space, or instructions that may
be illegal instruction in a mode of the computerized system,
such as an expected mode of the computerized system while
executing the test or the like. Instruction generator 250 may
generate a test comprising the instructions.

In some exemplary embodiments, test generator 220 may
comprise a template segment generator 255, for generating a
multiplicity of instructions based on a template segment, such
as the segments shown above. Template segment generator
255 may utilize a state of the target computerized system to
generate the instructions. The state may be determined by
state simulator 230. Template segment generator 255 may
generate instructions based on a template segment, the
instructions configured to test some aspects of the target
computerized system, such as causing page faults, division by
zero, raising exceptions and the like, as demonstrated in the
scenario depicted in the template segment. Template segment
generator 255 may utilize the state of the target computerized
system to determine which instructions to generate, and with
which directives. Thus, the instructions generated upon the
template segment may behave differently in different genera-
tions due to the variations in the directives.

In some exemplary embodiments, test generator 220 may
comprise a gap size determinator 260. Gap size determinator
260 may be configured to determine a number of instructions
between two template instructions. For example, gap size
determinator 260 may determine that there may be five
instructions between the second test template and the fifth test
template. It will be noted that gap size determinator 260 may
determine a number of instructions that is an approximation
of the correct number of instructions. Gap size determinator
260 may determine a number of instructions based on an
exemplary generation of instructions based on the template
instructions between the two template instructions. Gap size
determinator 260 may be utilized in case a template instruc-
tion or segment selector 240 determines a next template
instruction is not a consecutive template instruction, such as
in case of branch instruction being taken. The determination
of gap size determinator 260 may be utilized by instruction
generator 250 to determine a location within the test to add an
instruction which instruction generator 250 generates. For

20

30

35

40

45

55

10

example, in case the gap is of five instructions, instruction
generator 250 may leave space for five instructions between
an instruction associated with a first of the two template
instructions and an instruction associated with the second of
the two template instructions. It will be noted that a portion of
the space may already be occupied by instructions previously
generated by instruction generator 250. It will be noted that in
a test a location of an instruction may be important as the
location may be associated with an address which may be
utilized in some instructions.

In some exemplary embodiments, test generator 220 may
comprise a gap modifier 265. Gap modifier 265 may be con-
figured to modify a gap of space for instructions left. Gap
modifier 265 may extend the gap or shrink the gap, as
required.

The gap may be modified to include additional space by
adding a branching instruction to a designated memory space
or region in which additional instructions may be added. A
last instruction in the designated memory space may be a
branching instruction to a location in the gap, immediately
after the gap or the like. For example, a space of five instruc-
tions may be utilized to effectively occupy ten instructions by,
for example, using the space for four instructions and a
branching instruction to the designated memory space; using
the designated space for the rest of the instructions (six
instructions) and for a branching instruction to an address
immediately after the gap. It will be noted that the designated
memory space may be a memory space which may be
reserved to extending a gap. The designated memory space
may partitioned to comprise several such extensions to dif-
ferent gaps.

The gap may be modified to include less space (also
referred to as shrinking the gap), by utilizing a branching
instruction inside the gap, by adding empty instructions or the
like. Empty instructions, such as a “no op” instruction may be
configured to be avoided by the target computerized system
such that they do not alter the state of the target computerized
system except for the next instruction indicator. In some
exemplary embodiments, a preprocessing step may be per-
formed to eliminate the “no op” instructions. The gap may be
shrunk by utilizing a branching instruction from a first
instruction to a second instruction, such that the instructions
between the first and second instructions may not be
executed.

In some exemplary embodiments, test generator 220 may
comprise an instruction verifier 270. Instruction verifier 270
may verify that a generated instruction is in line with a state of
the target computerized system. The generated instruction
may be previously generated by instruction generator 250.
The generated instruction may be associated with a template
instruction. The template instruction may be selected by tem-
plate instruction or segment selector 240 based on the state of
the target computerized system. In some exemplary embodi-
ments, as the generated instruction is already generated, there
is no need that instruction generator 250 generates any
instruction associated with the template instruction. Instruc-
tion verifier 270 may verify that that generated instruction is
a valid instruction in respect to the current state of the target
computerized system, as may be determined by state simula-
tor 230. For example, the generated instruction may be valid
in a first mode of the target computerized system and invalid
in a second mode of the target computerized system. The
generated instruction may be generated in respect to a previ-
ous state of the target computerized system, in which the
target computerized system is in the first mode. Instruction
verifier 270 may determine that the generated instruction is
invalid in case the target computerized system is in the second

US 9,117,023 B2

11

mode in the current state. In some exemplary embodiments,
test generator 220 may revoke the generated instruction. In
some exemplary embodiments, test generator 220 may gen-
erate additional instruction that may be configured to handle
the generated instruction in the second mode, such as for
example by handling an exception that may be raised.

In some exemplary embodiments, test generator 220 may
comprise a backtracking module 275 configured to revoke
one or more instructions. Backtracking module 275 may
revoke the one or more instructions based on a determination
by instruction verifier 270 that a generated instruction is not a
valid instruction. Backtracking module 275 may be utilized in
case instruction generator 250 determines that no valid
instruction may be generated, such as for example, in case of
aparameter determined by the template instruction that has a
value that prevents any generated instruction to be valid. For
example, a template instruction defining a branching opera-
tion to an address stored in a register may not be valid in case
the content of the register is not a valid address. Backtracking
module 275 may revoke one or more instructions previously
generated by instruction generator 250 in order to backtrack
to a state in which a different generation may heal the cause
that required the backtracking, such as an invalid instruction
that was previously generated. The backtracking may achieve
this goal by, for example, generating a different instruction
instead of the generated instruction or replacing other instruc-
tions such that the state of the target computerized system
may be modified. Referring again to the template instruction
defining a branching operation to an address stored in a reg-
ister, a content of the register may be modified by modifying
instructions that affected the value of the register.

In some exemplary embodiments, test generator 220 may
comprise a leftover template instruction generator 290. Tem-
plate instruction generator 290 may be configured to generate
instructions associated with one or more template instruc-
tions in test template 210 which are designated, based on the
state of the target computerized system, not to be executed.
For example, referring back to the aforementioned exemplary
test template, in case a branching instruction associated with
the second template instruction is determined to cause a jump
to the ELSE label, the third and fourth template instructions
may not be generated. In such a case, a gap may be left, as
determined by gap size determinator 260. After it is deter-
mined that an execution of a test generated in respect to test
template 210 is completed, for example by state simulator
230, the leftover template instruction generator 290 may
determine whether a portion of test template 210 was not
utilized in the generation process, and is therefore deemed as
leftover template instruction. Leftover template instruction
generator 290 may generate instructions associated with the
leftover template instruction. Leftover template instruction
generator 290 may generate instructions in a similar manner
to instruction generator 250. Leftover template instruction
generator 290 may generate instructions based on the test
template such that the generated instructions are in line with
the test template. In some exemplary embodiments, leftover
template instruction generator 290 may generate invalid
instructions that may or may not be in line with the leftover
template instructions. The invalid instructions may be useful
to increase quality of the test. For example, in some cases, a
target computerized system may tentatively perform instruc-
tions before verifying that they should be performed. Once a
determination is made that the instructions should not be
executed, the outcome of its tentative execution is omitted. In
case there is a bug in the target computerized system an

10

15

20

25

30

35

40

45

50

55

60

65

12

invalid instruction may be erroneously performed, enabling
personnel verification engineer to detect the bug during veri-
fication.

In some exemplary embodiments, verification device 200
may comprise an execution module 280. Execution module
280 may be utilized to execute the test on the target comput-
erized system. Execution module 280 may be configured to
execute the test once generation of the test by test generator
220 is completed.

Referring now to FIG. 3 showing a flowchart diagram of'a
method in accordance with some exemplary embodiments of
the disclosed subject matter.

In step 300, a test template, such as 210 of FIG. 2, may be
obtained. The test template may be obtained by an interface,
such as 205 of FIG. 2.

In step 310, a template instruction or a template segment
may be selected from the test template. The template instruc-
tion or segment may be selected by a template instruction or
segment selector, such as 240 of FIG. 2.

In step 320, a determination is made whether the template
instruction or segment was previously processed or not. In
case the template instruction or segment was not already
processed, step 330 may be performed. In case the template
instruction or segment was previously processed, and one or
more instructions were generated in respect to the test tem-
plate, step 350 may be performed.

In step 330, a gap between a first template instruction and
a second template instruction may be adjusted. The first tem-
plate instruction may be a template instruction or segment
selected in step 310 in a preceding iteration of the exemplary
method. The second template instruction may be the template
instruction or segment selected in step 310 in the current
iteration. A size of a gap may be determined by a gap size
determinator, such as 260 of FIG. 2. A gap may be extended
or shrunk by a gap modifier, such as 265 of FIG. 2. A size of
gap may be determined in case of a branching operation or a
similar jumping instruction to a non-sequential template
instruction. A gap may be modified in case of a former gap
that was left and is being utilized for generation of instruction
associated with the current template instruction.

In step 340, an at least one instruction associated with the
template instruction, or a multiplicity of instructions associ-
ated with a template segment may be generated. The instruc-
tion or instructions may be generated based on state of a target
computerized system executing the test. The instruction or
instructions may be generated by an instruction generator,
such as 250 of FIG. 2.

In step 350, a generated instruction or instructions may be
verified in respect to a current state of the target computerized
system. The generated instruction or instructions may be
verified by an instruction verifier, such as 270 of FIG. 2.

In step 360, backtracking may be performed in case
needed. The backtracking may be performed by a backtrack-
ing module, such as 275 of FIG. 2. The backtracking may
revoke one or more generated instructions, modify the state to
a state before the execution of the revoked one or more gen-
erated instructions.

In step 370, which may be performed after step 340 or step
360, a state of a target computerized system executing the test
is simulated. The state may be simulated incrementally, by
starting with a state before execution of the instruction asso-
ciated with the template instruction or segment selected in
step 310, and modifying the state by executing the instruction
associated with the template instruction. The state may be
simulated by a state simulator, such as 230 of FIG. 2. It will be
noted that the state of the target computerized system may

US 9,117,023 B2

13

initially be set to an initial state, associated with a boot of the
target computerized system, loading of a test or the like.

In step 380 a determination is made whether the execution
of'the test was completed. The determination may be based on
the state of the target computerized system. The determina-
tion may be based on the test template and whether additional
template instructions exist.

In step 390, leftover template instructions may be identi-
fied. In some exemplary embodiments, generation of instruc-
tions associated with the leftover template instructions may
be performed. Step 390 may be performed by a leftover
template instruction generator, such as 290 of FIG. 2.

In step 395, the test, as generated by the method, may be
executed by the target computerized system. The test may be
executed by an execution module, such as 280 of FIG. 2.

In some exemplary embodiments, generation of instruc-
tions may be affected by the type of instruction or instruction
combination comprising a template segment. A template
instruction which includes a non-branching instruction may
be processed by generating associated instruction and simu-
lating the execution of the associated instruction. A template
instruction which includes a label definition may be pro-
cessed by further associating the next instruction indicator
with the label. Such a label may be referred to as a defined
label. A template instruction which includes a branching
instruction to a defined label, may be processed by generating
a branch instruction to the address associated with the defined
label and by executing the branch instruction. The next tem-
plate instruction to be processed may be either the branch
target or the next instruction addresses, depending on the
outcome of the execution of the branch. A template instruc-
tion which includes a branch to an undefined label may be
processed by associating each template instruction between
the template instruction and a label definition of the undefined
label with a memory location, such that the label may be
defined. After aforementioned association of template
instructions and memory locations, the template instruction
may be further processed as a template instruction including
a branching instruction of a defined label.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
program code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/

10

15

20

25

30

35

40

45

50

55

60

65

14

or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

As will be appreciated by one skilled in the art, the dis-
closed subject matter may be embodied as a system, method
or computer program product. Accordingly, the disclosed
subject matter may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, the present invention may take the
form of a computer program product embodied in any tan-
gible medium of expression having computer-usable pro-
gram code embodied in the medium.

Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, infrared, or semiconductor system, apparatus,
device, or propagation medium. More specific examples (a
non-exhaustive list) of the computer-readable medium would
include the following: an electrical connection having one or
more wires, a portable computer diskette, a hard disk, a ran-
dom access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a transmission
media such as those supporting the Internet or an intranet, or
a magnetic storage device. Note that the computer-usable or
computer-readable medium could even be paper or another
suitable medium upon which the program is printed, as the
program can be electronically captured, via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, or otherwise processed in a suitable man-
ner, ifnecessary, and then stored in a computer memory. Inthe
context of this document, a computer-usable or computer-
readable medium may be any medium that can contain, store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system, appa-
ratus, or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code embodied therewith, either in baseband or as part of a
carrier wave. The computer usable program code may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, and the
like.

Computer program code for carrying out operations of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other

US 9,117,023 B2

15

claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A computerized apparatus comprising:

a processor;

an interface for obtaining a test template associated with a
target computerized system, the test template comprises
atemplate segment, the template segment comprising at
least one instruction and at least one directive or control
construct related to the at least one instruction;

a test generator configured to generate a test associated
with the template segment obtained by said interface,
said test generator comprises:

a state simulator configured to determine a state of the
target computerized system associated with an execu-
tion of the test;

a template instruction or segment selector configured to
select a template instruction or segment from the test
template based on the state of the target computerized
system determined by said state simulator; and

an instruction template segment generator configured to
generate a multiplicity of instructions based on the state
of' the target computerized system and the template seg-
ment selected by said template instruction or segment
selector, wherein the multiplicity of instructions behave
differently in different activations of the instruction tem-
plate segment generator due to the at least one directive
or control construct,

wherein the test generator further comprises an instruction
verifier configured to verify that a previously generated
instruction is in line with the current state of the target
computerized system and with the template instruction
or segment selected by said template instruction or seg-
ment selector.

2. The computerized apparatus of claim 1, wherein said test
generator further comprises a gap size determinator config-
ured to approximate a number of instructions between two
template instructions.

3. The computerized apparatus of claim 2, wherein said test
generator further comprises a gap modifier configured to
modify a gap determined by said gap size determinator.

4. The computerized apparatus of claim 1, wherein the
generated instruction is generated by said instruction genera-
tor in respect to a second state of the target computerized
system.

5. The computerized apparatus of claim 1, wherein said test
generator comprises a backtracking module configured to
revoke at least the generated instruction.

6. The computerized apparatus of claim 1 further compris-
ing an execution module configured to execute the test gen-
erated by said test generator.

7. The computerized apparatus of claim 1, wherein said test
generator further comprising a leftover template instruction
generator.

8. The computerized apparatus of claim 1, wherein said
instruction template segment generator, generate different

10

15

20

25

30

35

40

45

50

55

60

65

16

template instruction when the said instruction verifier deter-
mines that such instruction could be generated.

9. A computerized apparatus comprising:

a processor;

an interface for obtaining a test template associated with a
target computerized system, the test template comprises
atemplate segment, the template segment comprising at
least one instruction and at least one directive or control
construct related to the at least one instruction;

a test generator configured to generate a test associated
with the template segment obtained by said interface,
said test generator comprises:

a state simulator configured to determine a state of the
target computerized system associated with an execu-
tion of the test;

a template instruction or segment selector configured to
select a template instruction or segment from the test
template based on the state of the target computerized
system determined by said state simulator; and

an instruction template segment generator configured to
generate a multiplicity of instructions based on the state
of the target computerized system and the template seg-
ment selected by said template instruction or segment
selector, wherein said instruction template segment gen-
erator, records random choice made during generation in
the state of the target computerized system and utilizes
this during the generation in a second state of the target
computerized system; and

wherein the test generator further comprises an instruction
verifier configured to verify that a previously generated
instruction is in line with the current state of the target
computerized system and with the template instruction
or segment selected by said template instruction or seg-
ment selector.

10. A method in a computerized environment, said method

comprising:

obtaining, by an interface, a test template associated with a
target computerized system, the test template comprises
atemplate segment, the template segment comprising at
least one instruction and at least one directive or control
construct related to the at least one instruction, wherein
the at least one instruction behaves differently in differ-
ent generated tests due to the at least one directive or
control construct;

generating a test associated with the template segment
obtained by said interface, said generating comprises:

simulating a state of the target computerized system asso-
ciated with an execution of the test;

selecting a template instruction or segment from the test
template based on the state of the target computerized
system determined by said simulating;

generating a multiplicity of instructions based on the state
of the target computerized system and the template seg-
ment selected by said selecting; and

verifying that a previously generated instruction is in line
with the current state of the target computerized system
and with the template instruction or segment selected by
said selecting,

whereby the test template is transformed to the test config-
ured to be executed by the target computerized system.

11. The method of claim 10, wherein said simulating the

state of the target computerized system, said selecting a tem-
plate instruction or segment and said generating the multi-
plicity of instructions are performed several times, a first
template instruction or segment is selected in a first iteration
of said selecting a template instruction or segment, a second

US 9,117,023 B2

17

template instruction is selected in a second iteration of said
selecting a template instruction or segment; and

wherein generating the test further comprises approximat-

ing a number of instructions between the first template
instruction or segment and the second template instruc-
tion or segment.

12. The method of claim 10, wherein said generating the
test further comprises modifying a gap comprising adding a
jumping instruction to a target address, the target address is in
a memory location selected from the group consisting of a
designated memory region and a memory location associated
with an end of the gap.

13. The method of claim 10, wherein said generating the
test further comprises revoking at least the generated instruc-
tion or segment.

14. The computerized method of claim 10 further compris-
ing executing the test on the target computerized system.

15. The computerized method of claim 10 wherein said
generating the test further comprises generating an instruc-
tion based on a leftover template instruction.

#* #* #* #* #*

10

15

20

18

